Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes.

نویسندگان

  • Ke Sun
  • Matthew T McDowell
  • Adam C Nielander
  • Shu Hu
  • Matthew R Shaner
  • Fan Yang
  • Bruce S Brunschwig
  • Nathan S Lewis
چکیده

Semiconductors with small band gaps (<2 eV) must be stabilized against corrosion or passivation in aqueous electrolytes before such materials can be used as photoelectrodes to directly produce fuels from sunlight. In addition, incorporation of electrocatalysts on the surface of photoelectrodes is required for efficient oxidation of H2O to O2(g) and reduction of H2O or H2O and CO2 to fuels. We report herein the stabilization of np(+)-Si(100) and n-Si(111) photoanodes for over 1200 h of continuous light-driven evolution of O2(g) in 1.0 M KOH(aq) by an earth-abundant, optically transparent, electrocatalytic, stable, conducting nickel oxide layer. Under simulated solar illumination and with optimized index-matching for proper antireflection, NiOx-coated np(+)-Si(100) photoanodes produced photocurrent-onset potentials of -180 ± 20 mV referenced to the equilibrium potential for evolution of O2(g), photocurrent densities of 29 ± 1.8 mA cm(-2) at the equilibrium potential for evolution of O2(g), and a solar-to-O2(g) conversion figure-of-merit of 2.1%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silic...

متن کامل

Stable Solar-Driven Water Oxidation to O2(g) By Multifunctional Electrocatalysts Coated Small Band Gap Semiconductors

Technologically important small band gap (<2 eV) semiconductors must be stabilized against corrosion or passivation in aqueous electrolytes before they can be used as photoelectrodes that directly produce fuels from sunlight. In addition, incorporation of electrocatalysts on the surface of the photoelectrodes is required for efficient oxidation of H2O to O2(g) and reduction of H2O or H2O and CO...

متن کامل

Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide

Introduction of an ultrathin (2 nm) film of cobalt oxide (CoOx) onto n-Si photoanodes prior to sputter-deposition of a thick multifunctional NiOx coating yields stable photoelectrodes with photocurrent-onset potentials of B 240 mV relative to the equilibrium potential for O2(g) evolution and current densities of B28 mA cm 2 at the equilibrium potential for water oxidation when in contact with 1...

متن کامل

Amorphous TiO₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.

Although semiconductors such as silicon (Si), gallium arsenide (GaAs), and gallium phosphide (GaP) have band gaps that make them efficient photoanodes for solar fuel production, these materials are unstable in aqueous media. We show that TiO2 coatings (4 to 143 nanometers thick) grown by atomic layer deposition prevent corrosion, have electronic defects that promote hole conduction, and are suf...

متن کامل

570 mV photovoltage , stabilized n - Si / CoO x heterojunction photoanodes fabricated using atomic layer deposition

Heterojunction photoanodes, consisting of n-type crystalline Si(100) substrates coated with a thinB50 nm film of cobalt oxide fabricated using atomic-layer deposition (ALD), exhibited photocurrent-onset potentials of 205 20 mV relative to the formal potential for the oxygen-evolution reaction (OER), ideal regenerative solar-to-O2(g) conversion efficiencies of 1.42 0.20%, and operated continuous...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2015